Thursday, September 8, 2016

User centricity: the biggest challenge in digital analytics and marketing.


There is only one boss. The customer. And he can fire everybody in the company from the chairman on down, simply by spending his money somewhere else. Sam Walton.

The sentence is nothing but true. It's simple and responds to common sense above everything. It was pronounced by Sam Walton, founder of Walmart. This represents by itself a change of the paradigm of performance and operations optimization from store-centric (or website-centric) to customer-centric or, in a more general perspective, user-centric, understanding user as a customer or a potential. The folks from Wharton University in Pennsylvania are on the lead of customer-centricity and customer analytics research. Many applications come out from this kind of analytics: customer lifetime value, in-store analytics, etc.

One thing, however, is also clear: a customer, before becoming a customer, is just an user, flowing through different stages of its cycle (attention, awareness, etc.). This distinction between customer and not-yet-a-customer is specially important when it comes to a website or a native app. In other words, how does this shift of paradigm apply in a web-based environment? We have been observing the transformation from session-based to user-centric tracking and optimization.

Over the last months we have been witnesses of how the digital analytics tools have been shifting their main reports focusing on the user. Tools like Google Analytics report users before sessions, while some months ago it was doing it in the opposite way. For instance, look at the order in which Google Analytics reports: first users then sessions (for the App views).




Here we already face the first challenge: how to define a user. We will come with this in other posts. Before that, I want to recall a situation we faced some time ago while doing consultancy for a e-commerce site in the European market. We were requested to understand how the sessions were browsing in terms of multi-category behavior. Concretely, the website had a header looking like this:


The problem was to understand the share of sessions that were browsing through only one category, through two categories, through three categories, etc. over different periods of time. We had a split looking like:


Even more, we also showed how the carts were looking like in terms of cross-category items:


The management reacted very worried, and they immediately initiated actions towards incrementing the share of sessions that were browsing through more than one category, and to increase the number of distinct categories on each basket. If you agree with this course of action we must say you are doing it probably wrong. Indeed, all intents to increase the cross-category sessions and carts were unsuccessful.

What could have been a better approach? A good advise: put the user in the center and understand the intention of each one of its sessions. You can't simply pretend to have every user stepping at all your content on each session. Instead, you can get the most out of each session by understanding the intention of such session. If a user is visiting category A-related content on a given session, then make sure it performs a purchase over such category. The important is to prevent the user from spending its money somewhere else.

Is this everything we can take out of the user? On a session level, probably. But, what if we widen the time window? Instead of looking which category the user browses on a single session, we could check all the sessions that user performed over a week, month, quarter, etc. In the case we have being considering, the charts looked significantly different:


As we can see, the share of users that only browse over one category dropped from 60% to 40%, while the share of users that browse over 2 categories increased from 20% to 30%. And here is where we can induct some change. By incentivizing the user to reach other categories (again, over different sessions) we can improve the awareness of the user over such categories not browsed before. If the content is appealing enough, we might get a chance that the user will actually buy over it.

Another analysis that was interesting for this case was the one showing the distinct categories bought by every customer over a period of time, considering all the orders placed. We had a situation looking like:


which transformed into this:


after applying direct marketings action whose goals were precisely that: to increase the share of wallet of the user over different sessions and, probably, over different orders.

That is, be patient, and keep the user in your focus. Don't overwhelm it, and take advantage from each session... one at a time.

There is, however, a new variable that comes as an input in the equation of user-centricity, which applies specially to digital environments: the device used to reach the site. Identifying the user when it browses over different devices is a big challenge. Universal Analytics enables us to identify at least one important bunch of such users, and it can be applied for sites that somehow identify them via login, newsletters, etc. The reports look very promising:




This information is extremely useful to understand the intention of a given user (or a set of users) when reaching the site with the different available devices. For sure is not the same intention when a user reaches the site with a smartphone in the morning or with a tablet at the afternoon. Placing the user in the center is, at the very end, about understanding its intention on each one of the sessions at each seasonal moment (in-day, in-week, etc.), with each one of the different devices. To make it a bit more complicated, we can also introduce the fact that some of these users might be also visiting your traditional store (in case you have one, of course). Many sites (fashion industry, mainly) allow you to buy over the web of App and pick it in-store. Lots of research is currently ongoing, in order to track in-store behavior. For instance, Estimote is doing some efforts towards this goal.

In following posts we will talk about the shift of paradigm on the reporting strategy (not necessarily about tools but techniques and contents) whose center is on Customer Lifetime Value (CLV).

In any case, if you have more questions or issues with your omnichannel approach, don't hesitate to contact us here.

Tuesday, September 6, 2016

Haciendo un uso efectivo de los datos. Puede ser que no lo estés haciendo.


Los datos son el nuevo petróleo. Como tal, debe ser procesado y refinado para poder ser usado. ¿Hace tu compañía un uso efectivo de los datos?

Tal y como comentamos en el post fundacional, según FORTUNE en un post de principios del 2016, sólo el 20% de los directores piensan que su compañía hace un uso "altamente efectivo" de los datos. Ahora, la pregunta del millón es: ¿hace su compañía un uso efectivo de los datos? O, mejor aún, ¿su compañía usa datos?

Todas las compañías tienen datos, y es relativamente fácil comenzar a usarlos: sencillamente comience recolectando algunos datos en diversos sistemas y haga algún procesamiento sobre ellos (aunque sea manual). Muy rápidamente nos damos cuenta que hacer un uso (altamente) efectivo de los datos es bastante más difícil de lo que habíamos imaginado. En cualquier caso, centraremos el resto de este post en aquellas compañía que, de una manera u otra ya usan datos y desean hacer un uso más efectivo de los mismos.

El ejercicio clave es determinar qué quiere decir hacer un uso (altamente) efectivo de los datos. Para ello, lo haremos de la manera inversa: determinaremos qué es un uso inefectivo de los datos a partir de situaciones que nos hemos ido encontrando en los últimos años. ¿Serás capaz de pasar el test?

Test #1: ¿Qué tres KPI (indicadores clave de rendimiento) compruebas cada mañana cuando te sientas en tu escritorio? Si la respuesta a esta pregunta no es otra cosa que un conjunto claro y conciso de indicadores o cuadros de mando, entonces tu compañía hace un uso inefectivo de los datos.

Test #2: ¿Los datos que extraes generan alguna duda sobre su calidad? ¿Son datos fiables? ¿Son legibles? Si una sola de las respuestas es "no", entonces tu compañía hace un uso inefectivo de los datos.

Test #3: ¿Tardas demasiado tiempo en extraer datos? Entonces tu compañía hace un uso inefectivo de los datos.


Test #4: ¿Puedes extraer y cruzar datos de diversas fuentes? Si no, o se trata de un proceso manual, o algunas de las fuentes no son accesibles, entonces tu compañía hace un uso inefectivo de los datos.

Test #5: ¿Puedes leer grandes cantidades de datos? Si Excel parece quedarse corto y no se usa ninguna otra herramienta para hacerlo, entonces tu compañía hace un uso inefectivo de los datos.

Test #6: ¿Puedes extraer datos por ti mismo? Si necesitas estar permanentemente pidiendo ayuda (normalmente por la complejidad de los sistemas involucrados), entonces tu compañía hace un uso inefectivo de los datos.

Test #7: ¿Los descubrimientos son comunicados y entendidos (no necesariamente compartidos) por todo el mundo? Si los datos dan lugar a confusión o son pobremente comunicados, entonces tu compañía hace un uso ineficiente de los datos.

Test #8: ¿Experimentas montones de burocracia que hace que quienes tienen que tomar las decisiones no sean provistos con la información correcta y a tiempo? Entonces tu compañía hace un uso inefectivo de los datos.

Test #9: ¿Tienes preguntas concretas que debas contestar, y entonces determinas dónde se encuentra la información necesaria para responderla? Si es que no, entonces tu compañía hace un uso inefectivo de los datos.

Test #10: ¿Tomas acciones concretas a partir de los datos y de los descubrimientos? Si es que no, entonces sólo estás coleccionando información. Por lo tanto, tu compañía hace un uso inefectivo de los datos.

Tu compañía, pues, alcanza una cultura data-driven sí y sólo sí ninguna de las diez situaciones arriba mencionadas tiene lugar. Por lo tanto, ¿cómo las resolvemos?

Solución para #1: Definir KPI, organizarlos y conceptualizar cuadros de mando. Comienza por una servilleta y después pásalos a un papel. Luego haz que alguien lo tenga listo cada mañana en un PDF correctamente distribuido, y asegúrate de tenerlo en tu bandeja de entrada cada mañana. Por último, evoluciona hacia una herramienta de BI.

Solución para #2: Si los datos no son fiables, entonces debemos investigar en qué punto los datos dejan de serlos, tanto entre sistemas como dentro de los mismos. De la misma manera, es posible que haya errores en el proceso de extracción o que los procesos de transformación y manipulación sean defectuosos. El primer caso requerirá probablemente de procesos de congelación de datos. El segundo y tercer caso probablemente necesite nuevas reglas de manipulación.

Solución para #3: Si los datos tardan años en ser extraídos, es posible que las fuentes sean lentas de por sí (API de SalesForce, por ejemplo). También es posible que los procesos de transformación y manipulación presenten fallos o que la herramienta de reporting no esté optimizada. Por último y no menos importante, es posible que que tu departamento de BI esté ahogado en peticiones.

Solución para #4: Si tienes muchas fuentes de datos que necesiten ser accedidas y cruzadas. se deberán definir procesos ETL (Extract, Transform, Load). Si el volumen de datos es verdaderamente grande, un Data Warehouse (DWH) puede ser una buena solución.

Solución para #5: Lo primero es preguntarse si se necesita tal cantidad de datos. Si resulta que sí, entonces se pueden hacer pre-procesamientos y cálculos de datos en servidor. Si esto no es posible (aunque apostamos a que sí se puede), se deberá buscar una herramienta que sea capaz de leer tal cantidad de datos.

Solución para #6: La capacidad de servirse por mismo es una quimera para muchas compañías, pero a la vez es algo deseable. Se debe comenzar por decir que no a peticiones sencillas. Forma a tu gente y hazlo muy simple (no necesariamente barato): implementa una herramienta de reporting y enseña a tu gente (desde el analista hasta el CEO) a usarla. Se puede comenzar por tablas muy sencillas que no pueden ser modificadas. Más adelante (mucho más temprano de lo que puede parecer) los usuarios irán pidiendo derechos de modificación y edición.

Solución para #7: Comprueba dónde están los cuellos de botella. Asegúrate que tus analistas tengan buenos dotes de comunicación. Aplica el Principio de Comunicación Piramidal, de Barbara Minto. Y, por favor, evita presentaciones con decenas de diapositivas. La clave es el foco.

Solución para #8: Nuevamente, hay que analizar dónde están los cuellos de botella. Asegúrate que las personas que tienen que tomar las decisiones pueden acceder a los datos (¡y asegúrate de que usan datos!). También es posible que el departamento de BI o de Análisis necesite mejorar en transparencia. La clave puede estar en mejorar los procesos de feedback.

Solución para #9: Por favor, evita el Síndrome de Diógenes en versión datos. No es necesario almacenar todos los datos a la espera de que, por algún milagro, se obtengan descubrimientos a partir de ellos. Hay que conocer bien la estrategia y las operaciones del negocio para identificar los puntos claves que necesiten una decisión. Entonces, y sólo entonces, trata de descubrir qué datos son necesarios. Si los datos están ahí, úsalos. Si no, comienza a almacenarlos inmediatamente.

Solución para #10: Un buen consejo es el de evitar tener montones de cuadros de mandos y KPI (nuevamente, la clave es el foco). Una buena herramienta es el del "Test de las Tres Capas de para qué" (Three Layers of So What Test). A cada indicador, cuadro de mando o análisis se le pregunta: ¿para qué? Frecuentemente, la respuesta a esta pregunta vuelve a requerir nuevamente la pregunta: ¿para qué? Si a la tercera vez que se hace la pregunta no aparece una recomendación clara de qué hacer, entonces el análisis, KPI o cuadro de mando es totalmente inútil. Tírelo.

En todo caso, si esto suena muy complicado, no tiene más que contactarnos: es.ducks-in-a-row.es.

Para acabar, sólo queremos mencionar que los datos representan, o deben representar, acción. Para que esto pase, los datos deben ser accesibles, fiables y comunicados de manera eficiente. Entonces, y sólo entonces, tu compañía estará haciendo un uso efectivo de los datos.